

MEMORIAL DESCRITIVO DE CALÇAMENTO EM INTERTRAVADO COM BLOCO SEXTAVADO

CARGOURA

PREFEITURA MUNICIPAL DE CAMBUQUIRA

LOCAL: Rua Professora Alice Braga Coelho, Bairro Hotel Fonte do Marimbeiro MUNICÍPIO: CAMBUQUIRA – MG

SUMÁRIO

1	PAVIMENTO FLEXIVEL EM PAVER INTERTRAVADO DE CONCRE	5TO 2
1.1	ESTRUTURA DO PAVIMENTO	2
1.1.1	Procedimento A (ABCP- ET27)	2
1.1.2	Procedimento B (PCA - Portland Cement Association)	2
1.2	MÉTODOS DE DIMENSIONAMENTO	3
1.2.1	Procedimento A	3
1.2.1.1	1 Observações Gerais	3
1.2.1.2	2 Forma e dimensões	4
1.2.2	Procedimento B	4
2	MEMORIAL DESCRITIVO DE EXECUÇÃO	6
2.1	PAVIMENTAÇÃO	6
2.1.1	Regularização do sub-leito	6
2.1.2	Sub-baseErro! Marcador não a	lefinido.
2.1.3	Reforço estrutural em áreas de pontos críticos do pavimento Erro! Marcado	r não
	definido.	
2.1.4	Base	6
2.1.5	Pavimento em intertravado de concreto	<i>7</i>
2.1.5.1	1 Procedimento de execução	8
APÊN	NDICES	11

1 PAVIMENTO FLEXÍVEL EM PAVER INTERTRAVADO DE CONCRETO SEXTAVADO

1.1 ESTRUTURA DO PAVIMENTO

Os pavimentos de blocos pré-moldados de concreto para vias urbanas são, nestas diretrizes de projeto, dimensionados por dois métodos de cálculo preconizados pela ABCP - Associação Brasileira de Cimento Portland, aqui transcritos, sendo o seu entendimento e a sua aplicação ilustrada com exemplos práticos.

Os métodos utilizam-se, basicamente, de dois gráficos de leitura direta, fornecendo as espessuras necessárias das camadas constituintes do pavimento de blocos pré-moldados.

A escolha do método de dimensionamento do pavimento da via ficará entre as duas opções propostas a seguir, em função do número "N" de solicitações do eixo simples padrão.

Salientamos, entretanto, que a presente diretriz tem como objetivo principal a execução de pavimentos de vias submetidas até tráfego médio. O uso deste procedimento em vias de tráfego pesado deverá ser acompanhado de estudos mais detalhados, ficando a critério da projetista a definição da metodologia e do procedimento de dimensionamento a adotar, desde que aprovado pela SIURB/PMSP.

Os métodos citados devem ser utilizados respeitando as seguintes considerações:

1.1.1 Procedimento A (ABCP- ET27)

Sua utilização é mais recomendada para vias com as seguintes características:

Vias de tráfego muito leve e leve com "N" típico até 10⁵ solicitações do eixo simples padrão, por não necessitar de utilização da camada de base, gerando, portanto, estruturas esbeltas e economicamente mais viáveis em relação ao procedimento B.

Vias de tráfego meio pesado a pesado com "N" típico superior a 1,5 x 10⁶ em função do emprego de bases cimentadas, sendo tecnicamente mais adequado do que o procedimento B.

1.1.2 Procedimento B (PCA - Portland Cement Association)

Sendo mais indicado para o dimensionamento de vias de tráfego médio a meio pesado com "N" típico entre 10^5 e 1,5 x 10^6 solicitações, em função da utilização de bases granulares que geram estruturas mais seguras, adotando o princípio de que as camadas do pavimento a partir do subleito sejam colocadas em ordem crescente de resistência, de modo que as deformações por cisalhamento e por consolidação dos materiais reduzam a um mínimo as deformações verticais permanentes.

O Quadro 1 ilustra a aplicação dos procedimentos descritos.

Quadro 1 - Prioridade (p) de utilização dos procedimentos de dimensionamento

	TIPO TRÁFEGO				
PROCEDIMENTO	ML	L	M	MP	P
A	1ª p	1ª p	2ª p	1ª p	1ª p
В	2ª p	2ª p	1ª p	1ª p	2ª p

1.2 MÉTODOS DE DIMENSIONAMENTO

1.2.1 Procedimento A

Este procedimento foi adaptado pela ABCP no Estudo Técnico n.º 27 do trabalho original proposto pela BCA - "Bristish Cement Association", com a utilização de bases cimentadas .

O método utiliza, para o dimensionamento da estrutura do pavimento, dois gráficos de leitura direta, fornecendo as espessuras necessárias das camadas constituintes do pavimento.

A Figura 1 fornece as espessuras necessárias de sub-base em função do valor de CBR do subleito e do número "N" de solicitações.

A Figura 2, por sua vez, mostra a espessura da base cimentada em função do número "N".

Para tráfego com $N \le 1.5 \times 10^6$, a camada de base não é necessária.

Para tráfego com 1,5 x $10^6 \le N < 1,0$ x 10^7 , a espessura mínima da camada de base cimentada será de 10 cm.

Para tráfego $N \ge 10^7$, a espessura de base cimentada será determinada através da Figura 2.

1.2.1.1 Observações Gerais

a) Camada de sub-base

Quando o N < 5 x 10^5 , o material de sub-base deve apresentar um valor de CBR \geq 20%; se o subleito natural apresentar CBR \geq 20%, fica dispensada a utilização da camada de subbase.

Quando o N \geq 5 x 10⁵, o material da sub-base deve apresentar um valor de CBR \geq 30%, se o subleito apresentar CBR \geq 30%, fica dispensada a utilização de camada de sub-base.

b) Camada de revestimento

Os blocos de concreto pré-moldados devem atender às especificações de materiais contidas na EM-6, da SIURB/PMSP, e também seguir as orientações das normas brasileiras NBR 9780 e

NBR 9781 - Peças de concreto para pavimentação, as quais fornecem informações precisas aos fabricantes, projetistas e usuários desse tipo de pavimento no que concerne a materiais utilizados, características geométricas das peças, métodos de ensaio, além de procedimentos de inspeção, aceitação e rejeição das peças.

Dessas normas, cabe ressaltar alguns itens importantes, tais como:

Espessura e resistência dos blocos de revestimento

A espessura dos blocos do revestimento será de 6 a 10 cm em função do tráfego solicitante, conforme Quadro 2.

Quadro 2 - Espessura e resistência dos blocos de revestimento

TRÁFEGO	ESPESSURA REVESTIMENTO	RESISTÊNCIA A COMPRESSÃO
		SIMPLES
$N \le 5x10^5$	6,0 cm	35 MPa
$5x10^5 < N < 10^7$	8,0 cm	35 a 50 MPa
$N > 10^7$	10,0 cm	50 MPa

1.2.1.2 Forma e dimensões

As peças de concreto pré-moldadas mais utilizadas em pavimentação urbana são as definidas como sendo de formato geométrico regular, com comprimento máximo de 40 cm, largura mínima de 10 cm e altura mínima de 6 cm, devendo também ser estabelecida uma relação de forma entre as dimensões. As variações máximas permissíveis nas dimensões são de 3 mm no comprimento e largura e de 5 mm na altura das peças. Blocos com outras formas poderão ser contemplados, desde que atendam ao estabelecido nesta norma.

1.2.2 Procedimento B

O procedimento aqui descrito tem base em pesquisas desenvolvidas na austrália, áfrica do sul, Grã-Bretanha e nos Estados Unidos, bem como em observações laboratoriais e de pistas experimentais, nas quais o desempenho de pavimentos em serviço foi acompanhado. Seu desenvolvimento foi efetuado pelo Corpo de Engenheiros do Exército Americano (USACE). É uma evolução do método USACE, de pavimentos flexíveis, levando em conta o intertravamento dos blocos, pressupondo uma resistência crescente das camadas, a partir do subleito, de modo que as deformações por cisalhamento e por consolidação dos materiais sejam pequenas, a ponto de reduzir ao mínimo as deformações verticais permanentes (trilhas de roda).

Admite-se a adoção de bases tratadas com cimento, com fator de equivalência estrutural igual a 1,65.

Em função da classificação da via em estudo e de seu respectivo número de solicitações do eixo simples padrão "N", bem como do valor do índice de Suporte Califórnia (CBR) do subleito, é determinada, através da Figura 3, a espessura de material puramente granular (H_{BG}) correspondente à camada de base assentada sobre o subleito.

O valor de H_{BG} assim determinado pode ser subdividido em dois, adotando-se uma camada de sub-base puramente granular e uma camada de base cimentada, que terá uma espessura determinada em função do coeficiente de equivalência estrutural aqui adotado (K_B= 1,65). Recomenda-se que, para as vias de tráfego pesado, seja adotada a execução de bases com materiais mais nobres, que permitirá uma redução das espessuras finais do pavimento, o que será possível com a introdução de bases tratadas com cimento. Recomenda-se, também, que as espessuras mínimas para camadas de base sejam de:

- 15 cm para materiais puramente granulares;
- 10 cm para materiais tratados com cimento.

Os blocos pré-moldados do revestimento devem atender, neste método, a espessura mínima de 8 cm, chegando a 10 cm para as condições mais severas de carregamento, o que deve ser julgado pelo projetista em cada situação.

Quadro 3 - Classificação das vias e parâmetros de tráfego

5.000 ° 0	TRÁFEGO PREVISTO	VIDA DE PROJETO ANOS	VOLUME INICIAL NA FAIXA MAIS CARREGADA		EQUIVA-	
FUNÇÃO PREDOMINANTE			VEÍCULO LEVE	CAMINHÃO E ÔNIBUS	LENTE POR VEÍCULO	CARACTERÍSTICO
Via local residencial com passagem	Leve	10	100 a 400	4 a 20	1,50	10 ⁵
Via coletora secundária	Médio	10	401 a 1500	21 a 100	1,50	5 x 10 ⁵
Via coletora principal	Meio Pesado	10	1501 a 5000	101 a 300	2,30	2 x 10 ⁶
Via arterial	Pesado	12	5001 a 10000	301 a 1000	5,90	2 x 10 ⁷
Via arterial principal ou expressa	Muito Pesado	12	> 10000	1001 a 2000	5,90	5 x 10 ⁷
Faixa Exclusiva	Volume Médio	12	-	< 500		10 ⁷
de ônibus	Volume Elevado	12	-	> 500		5 x 10 ⁷

2 MEMORIAL DESCRITIVO DE EXECUÇÃO

2.1 PAVIMENTAÇÃO

Todos os serviços deste item deverão ser executados seguindo a sequência lógica de execução de cada etapa, os quais serão supervisionados e somente após aprovação da fiscalização serão liberados individualmente de modo a dar continuada a execução das camadas que compõem o pavimento estrutural. O bloco a ser utilizado na pavimentação será do tipo sextavado, com espessura de 8cm e resistência de 35 Mpa, conforme imagens ilustrativas abaixo.

2.1.1 Regularização do sub-leito

O material do sub-leito deverá ser escarificado em 30cm e em seguida compactado com a energia de referência do Proctor "normal". O desvio de umidade em relação à ótima deverá situar-se no intervalo de -2% a +2%, preferencialmente no ramo seco. Será executado através de autopropulsores, progressivamente das bordas para o centro, até atingir o grau de compactação mínimo de 98%. Nos locais inacessíveis para os compactadores, deverão ser utilizados compactadores manuais de placa vibratória. A superfície do subleito deverá ser regularizada até assumir a forma da seção transversal tipo do leito carroçável e a execução não deve ser permitida em dias de chuva. Todos os serviços deverão seguir a especificação DNIT 137/2010-ES

2.1.2 Base

É a camada granular de pavimentação executada sobre a sub-base devidamente compactada e regularizada, deverá ser realizada em bica-corrida e argila (fornecida pelo município), nas

proporções de 33% e 67% respectivamente, com camadas de espessura demonstradas em projeto – 15cm.

Os equipamentos convencionais utilizados neste tipo de serviço são:

- Motoniveladora com escarificador,
- Caminhões tanque distribuidor de água,
- Rolos compactadores,
- Grade de discos.

Utilizar uma das composições granulométricas a seguir:

Peneiras	% em peso passando	% em peso passando	Tolerância
1"	100	100	± 7
3/8"	_	_	± 7
Nº 4	55 – 100	10 – 100	± 5
N ⁶ 10	40 – 100	55 – 100	± 5
Nº 40	20 – 50	30 – 70	± 2
Nº 200	6 – 20	8 – 25	± 2

O Índice de Suporte Califórnia não deverá ser inferior a 60 % e a expansão máxima será de 0.5%.

A execução da base compreende as operações de mistura e pulverização, umedecimento ou secagem dos materiais, em usina ou na pista, seguidas de espalhamento, compactação e acabamento, realizadas na pista devidamente preparada, na largura desejada, nas quantidades que permitam, após a compactação, atingir a espessura desejada.

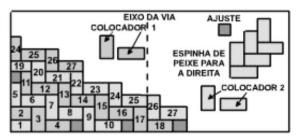
2.1.3 Pavimento em intertravado de concreto

A pavimentação será executada com bloco de concreto intertravado, prensado, paver, de resistência maior ou igual a 35 Mpa, assentado sobre berço de pó-de-pedra com espessura de 6 cm. A areia deverá ser limpa e isenta de matéria orgânica. A junta entre o paver não deverá ser superior a 0,2 mm. Após o assentamento será colocada uma camada de areia/pó de pedra para o fechamento das juntas com espessura de 2,5 cm. Ao termino do assentamento da pavimentação ela deverá ser compactada por meio de rolo compactador.

OBS.: A Proponente deverá apresentar laudo de rompimento de corpos de prova, em conformidade com a resistência mínima solicitada juntamente com ART e de acordo com normas técnicas da ABNT.

2.1.3.1 Procedimento de execução

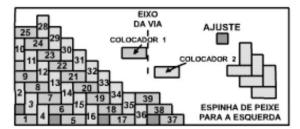
a) Juntas


As juntas deverão ser alternadas com relação às duas fiadas vizinhas, de tal modo que cada junta fique, no máximo, dentro do terço médio dos blocos.

b) Assentamento

O posicionamento e alinhamento dos blocos ao longo da via deverá ser feito com linhas longitudinais e transversais fixadas e esticadas com estaca, varetas ou blocos. As linhas transversais e longitudinais deverão ser esquadrejadas. É importante verificar a correção no alinhamento dos blocos a partir da linha longitudinal e das linhas transversais dispostas a cada 5,0 m. A uniformidade superficial e as juntas dos blocos serão criteriosamente fiscalizadas, tendo como junta padrão abertura mínima: em média de 2,5 mm e máxima aceitável de 5,0 mm. Os blocos deverão ser assentados na forma de espinha de peixe. O arremate dos blocos junto às guias deverá ser feito com blocos cortados (meia peça) com guilhotina ou outra ferramenta que propicie o corte regular das peças (quando necessário). Os blocos de ajustes devem ser cortados 2,0 mm mais curto que o espaço a ser preenchido. Para preencher espaços vazios menores que 1/4 do bloco deverá ser utilizado uma argamassa ci - ar (1:4).

Para o posicionamento em espinha de peixe, deve-se escolher para que a diagonal vai ficar.


• Caso se queira o avanço da esquerda para a direita, colocam—se primeiramente em torno de 18 blocos. O trabalho de 1 ou 2 colocadores continua com as duas fileiras seguindo a diagonal, sempre da frente para trás.

Caso se queira que a diagonal da espinha de peixe avance da direita para a esquerda,
 apenas um colocador poderá avançar pela diagonal colocando uma única fileira para a

frente e lá seguinte para trás. Este esquema, que exige mais ajustes, também serve para colocação em espinha-de- peixe com o posicionamento em outros ângulos.

c) Compactação

A compactação tem funções importantes: rasar os pavers pela face externa, iniciar o adensamento da camada de pó-de-pedra para o assentamento dos blocos e induzir o pó-de-pedra a penetrar, de baixo para cima, nas juntas entre as faces laterais para produzir o intertravamento dos pavers.

Na primeira etapa de compactação, a vibrocompactadora passa sobre o piso pelo menos duas vezes e em direções opostas: primeiro completa—se o circuito num sentido e depois no sentido contrário, com sobreposição dos percursos para evitar a formação de degraus.

- A compactação e o rejuntamento com areia fina avançam até um metro antes da extremidade livre, não-confinada, na qual prossegue a atividade de pavimentação;
- Esta faixa não compactada só é compactada junto com o trecho seguinte.

d) Rejuntamento

O rejuntamento deverá ser realizado com areia fina, com grãos menores que 2,5 mm, ou pó-depedra, desde que sua granulometria seja D < 2,5 mm. O rejuntamento diminui a permeabilidade do piso de água e garante o funcionamento mecânico do pavimento. Por isso é preciso utilizar materiais e mão-de-obra de boa qualidade na selagem e compactação final. Com rejunte mal feito os blocos ficam soltos, o piso perde travamento e se deteriora rapidamente.

- O rejunte exige areia fina com grãos menores que 2,5 mm do tipo utilizado para preparar cal-fino de paredes ou pó-de-pedra com granulometria menor que 2,5 mm;
- O uso de peneira de malha quadrada permite retirar os grãos maiores que 2,5 mm, contaminantes e corpos estranhos, além de soltar a areia para que seque mais facilmente;
- Na hora da colocação, o material precisa estar seco, sem cimento ou cal;

- Em média, é preciso utilizar em torno de 3,5 litros de areia por m2, ou seja, 1 m3 serve para selar 285 m2 de pavimento;
- O material é posto sobre os pavers em camadas finas para evitar que sejam totalmente cobertos;
- O espalhamento é feito com vassoura até que as juntas sejam completamente preenchidas;
- Quando se tem maior volume de pessoal, a varrição pode ser alternada com a compactação final.

e) Compactação final

A compactação final tem a função de dar firmeza ao pavimento. Portanto, vale a pena concentrar esforços nessa etapa, ainda que o tráfego após a conclusão do piso continue compactando a areia fina das juntas e acomodando os blocos.

Sequência desta etapa:

- A compactação final é executada da mesma forma que o indicado para primeira etapa dessa atividade;
- Deve-se evitar o acúmulo de areia fina, para que ela não grude na superfície dos pavers,
 nem forme saliências que afundem os blocos quando da passagem da vibrocompactadora;
- É preciso fazer pelo menos quatro passadas da vibrocompactadora em diversas direções, numa atividade que se desenvolve por trechos de percursos sucessivos;
- Encerrada esta operação o pavimento pode ser aberto ao tráfego;
- Se for possível, deixar o excesso da areia fina do rejunte sobre o piso por cerca de duas semanas, o que faz com que o tráfego contribua para completar o selado das juntas;
- Só é recomendável deixar o excesso de areia quando não houver chuvas, quando a frenagem não for dificultada ou a poeira não incomodar;
- Em caso de chuva é feita a varrição final e a abertura da via para o tráfego;
- Uma ou duas semanas depois o empreiteiro volta à obra para refazer a selagem e nova varrição;
- Não se joga água sobre o piso antes de completar um mês de assentamento.

a) Equipamentos

Os equipamentos destinados à execução do pavimento são os seguintes:

- Vibrocompactador;
- Outras ferramentas: pás, picaretas, carrinhos de mão, régua, nível de pedreiro, cordões, ponteiras de aço, vassouras, alavanca de ferro, soquetes manuais ou mecânicos, e outras.

b) Materiais

Os blocos de concreto deverão apresentar resistência característica a compressão $F_{CK} \ge 35$ MPa e atender as exigências estabelecidas nas normativas EM-6, NBR 9780 e NBR 9781.

APÊNDICES

FIGURA 1 - Espessura necessária de sub-base (reproduzido do boletim técnico n°. 27 da ABCP)

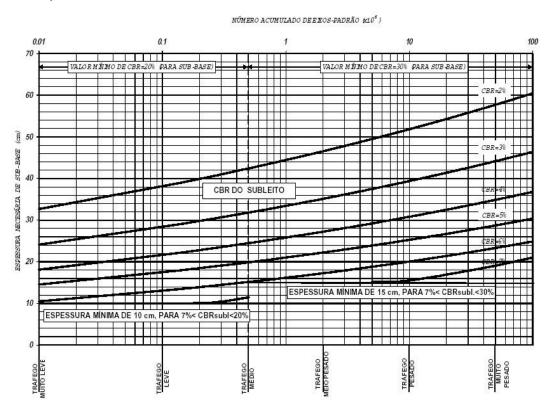
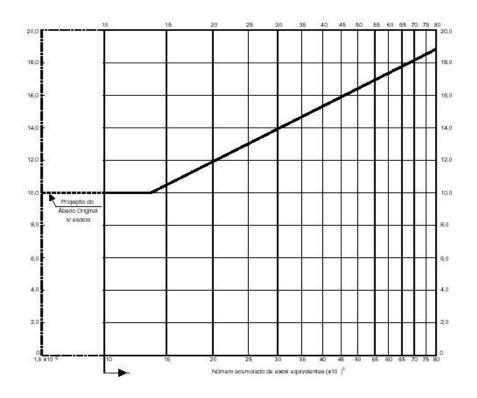



FIGURA 2 - Espessura da Base solo/bica-corrida em Função do Número "N"

Cambuquira, 20 de julho de 2022.

Eng. Civil Everton dos Santos

 $CREA\ MG - 82.287/D$